Giant impacts and the origin and evolution of continents – Nature

  • Bindeman, I. et al. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24, 227–232 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Marks, N., Zierenberg, R. A. & Schiffman, P. Strontium and oxygen isotopic profiles through 3 km of hydrothermally altered oceanic crust in the Reykjanes geothermal system, Iceland. Chem. Geol. 412, 34–47 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Johnson, T. E. et al. An impact melt origin for Earth’s oldest known evolved rocks. Nat. Geosci. 11, 795–799 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bottke, W. F. & Norman, M. D. The Late Heavy Bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

  • Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Osinski, G. R. et al. Impact-generated hydrothermal systems on Earth and Mars. Icarus 224, 347–363 (2013).

    ADS 
    Article 

    Google Scholar 

  • Kring, D. A., Whitehouse, M. J. & Schmieder, M. Microbial sulfur isotope fractionation in the Chicxulub hydrothermal system. Astrobiology 21, 103–114 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ingle, S. & Coffin, M. F. Impact origin for the greater Ontong Java Plateau? Earth Planet. Sci. Lett. 218, 123–134 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jones, A. P., Wunemann, K. & Price, G. D. Modeling impact volcanism as a possible origin for the Ontong Java Plateau. Geol. Soc. Am. Spec. Pap. 388, 711–720 (2005).

    Google Scholar 

  • Schmieder, M. & Kring, D. A. Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91–141 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johnson, T. E., Brown, M., Kaus, B. J. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Condie, K. in Earth’s Oldest Rocks (eds Van Kranendonk, M. et al.) 239–253 (Elsevier, 2019).

  • Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Korenaga, J. Was there land on the early Earth? Life 11, 1142 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smithies, R. et al. Oxygen isotopes in zircon trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Koeberl, C. The record of impact processes on the early Earth: a review of the first 2.5 billion years. Geol. Soc. Am. Spec. Pap. 405, 1–22 (2006).

  • Hansen, V. L. Impact origin of Archean cratons. Lithosphere 7, 563–578 (2015).

    ADS 
    Article 

    Google Scholar 

  • Salisbury, J. W. & Ronca, L. B. The origin of continents. Nature 210, 669–670 (1966).

    ADS 
    Article 

    Google Scholar 

  • Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petr. 150, 561–580 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bindeman, I. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineral. Geochem. 69 445–478 (2008).

  • Troch, J., Ellis, B. S., Harris, C., Bachmann, O. & Bindeman, I. N. Low-δ18O silicic magmas on Earth: a review. Earth-Sci. Rev. 208, 103299 (2020).

  • Hickman, A. H. East Pilbara Craton: A Record of One Billion Years in the Growth of Archean Continental Crust (Geological Survey of Western Australia, 2021).

  • Van Kranendonk, M. J., Kirkland, C. L. & Cliff, J. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228–229, 90–98 (2015).

    Article 
    CAS 

    Google Scholar 

  • Petersson, A. et al. A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton. Chem. Geol. 511, 51–70 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pidgeon, R., Nemchin, A. & Whitehouse, M. J. The effect of weathering on U–Th–Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia. Geochim. Cosmochim. Acta 197, 142–166 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res. 271, 198–224 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hofmeister, A. M. Effect of a Hadean terrestrial magma ocean on crust and mantle evolution. J. Geophys. Res. 88, 4963–4983 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jones, A. P. Meteorite impacts as triggers to large igneous provinces. Elements 1, 277–281 (2005).

    Article 

    Google Scholar 

  • O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Gerya, T. Precambrian geodynamics: concepts and models. Gondwana Res. 25, 442–463 (2014).

    ADS 
    Article 

    Google Scholar 

  • Herzberg, C. & Rudnick, R. Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149, 4–15 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Buick, R. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Simonson, B. M., Davies, D. & Hassler, S. W. Discovery of a layer of probable impact melt spherules in the Late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Aust. J. Earth Sci. 47, 315–325 (2000).

    ADS 
    Article 

    Google Scholar 

  • Simonson, B. M. et al. Geochemistry of 2.63–2.49 Ga impact spherule layers and implications for stratigraphic correlations and impact processes. Precambrian Res. 175, 51–76 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gamal El Dien, H. et al. The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust. Commun. Earth Environ. 2, 1–16 (2021).

    Article 

    Google Scholar 

  • Bindeman, I. N. & Valley, J. W. Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology 28, 719–722 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bindeman, I. N. & Valley, J. W. Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J. Petrol. 42, 1491–1517 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Byerly, B. L., Kareem, K., Bao, H. & Byerly, G. R. Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites. Nat. Geosci. 10, 871–875 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Puchtel, I. S. et al. Insights into early Earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics. Geochim. Cosmochim. Acta 108, 63–90 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Salerno, R., Vervoort, J., Fisher, C., Kemp, A. & Roberts, N. The coupled Hf–Nd isotope record of the early Earth in the Pilbara Craton. Earth Planet. Sci. Lett. 572, 117139 (2021).

    CAS 
    Article 

    Google Scholar 

  • Murphy, D. et al. Combined Sm-Nd, Lu-Hf, and 142Nd study of Paleoarchean basalts from the East Pilbara Terrane, Western Australia. Chem. Geol. 578, 120301 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hartnady, M. I., Kirkland, C. L., Smithies, R. H., Johnson, S. P. & Johnson, T. E. Pb isotope insight into the formation of the Earth’s first stable continents. Earth Planet. Sci. Lett. 578, 117319 (2022).

    CAS 
    Article 

    Google Scholar 

  • Kerr, A. C. & Mahoney, J. J. Oceanic plateaus: problematic plumes, potential paradigms. Chem. Geol. 241, 332–353 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kring, D. A. et al. Probing the hydrothermal system of the Chicxulub impact crater. Sci. Adv. 6, eaaz3053 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fagereng, Å., Harris, C., La Grange, M. & Stevens, G. Stable isotope study of the Archaean rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contrib. Mineral. Petr. 155, 63–78 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambrian Res. 281, 453–472 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bauer, A. et al. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochem. Perspect. Lett. 14, 1–6 (2020).

    Article 

    Google Scholar 

  • Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Osinski, G. R., Cockell, C. S., Pontefract, A. & Sapers, H. M. The role of meteorite impacts in the origin of life. Astrobiology 20, 1121–1149 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin, D. M. B., Hocking, R. M., Riganti, A. & Tyler, I. M. Geological Map of Western Australia 1:2 500 000 (Geological Survey of Western Australia, 2015).

  • Wingate, M. & Johnson, S. 216545: metatonalite, Mujee Pool; Geochronology Record 1566 (Geological Survey of Western Australia, 2019).

  • Wingate, M. & Johnson, S. 216594: metatonalite, Mujee Pool; Geochronology Record 1567 (Geological Survey of Western Australia, 2019).

  • Pidgeon, R., Nemchin, A. & Cliff, J. Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib. Mineral. Petr. 166, 511–523 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nasdala, L. et al. Zircon M257—a homogeneous natural reference material for the ion microprobe U‐Pb analysis of zircon. Geostand. Geoanal. Res. 32, 247–265 (2008).

    CAS 
    Article 

    Google Scholar 

  • Cavosie, A. J. et al. The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contrib. Mineral. Petr. 162, 961–974 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Morris, P. A. Composition of Geological Survey of Western Australia Geochemical Reference Materials (Geological Survey of Western Australia, 2000).

  • Hammerli, J., Kemp, A. I. & Jeon, H. An Archean Yellowstone? Evidence from extremely low δ18O in zircons preserved in granulites of the Yilgarn Craton, Western Australia. Geology 46, 411–414 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hiess, J., Bennett, V. C., Nutman, A. P. & Williams, I. S. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights to making old crust. Geochim. Cosmochim. Acta 73, 4489–4516 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Res. 92, 365–387 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Whitehouse, M. J., Nemchin, A. A. & Pidgeon, R. T. What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes. Gondwana Res. 51, 78–91 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • #Giant #impacts #origin #evolution #continents #Nature

    Leave a Comment

    Your email address will not be published. Required fields are marked *